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Abstract. A microscopic model of aggregation and fragmentation is introduced to investigate the size
distribution of businesses. In the model, businesses are constrained to comply with the market price, as
expected by the customers, while customers can only buy at the prices offered by the businesses. We show
numerically and analytically that the size distribution scales like a power-law. A mean-field version of our
model is also introduced and we determine for which value of the parameters the mean-field model agrees
with the microscopic model. We discuss to what extent our simple model and its results compare with
empirical data on company sizes in the US and debt sizes in Japan. Finally, possible extensions of the
mean-field model are discussed, to cope with other empirical data.

PACS. 02.50.Ng Distribution theory and Monte Carlo studies – 87.23.Ge Dynamics of social systems –
89.20.-a Interdisciplinary applications of physics

1 Introduction

In simple terms, the life of a business can be thought of
as three phases, creation, growth and death. There are
numerous motivations for the creation of a new business,
but the main principle is that it must attract enough cus-
tomers to be profitable. The actual number of customers
of a business is of course strongly time dependent, as the
British retail giant M&S discovered [1], and some very
popular businesses can become unpopular in a matter of
months. Finally, there is little doubt that the fate of every
business, sooner or later, is to close, normally for lack of
popularity or bankruptcy. The history of each business is
of course particular, its creation, successes and failures all
having their own reasons. However, all businesses are part
of the larger industry of selling to customers and they are
in competition with one another to survive. This interde-
pendence between businesses is likely to induce group be-
haviour. This group dynamics applies for shops or compa-
nies, where lack of popularity or bankruptcy are common
fates. A good example of the former is Smith and Corona,
once the largest typewriter maker in the US, which was
supplanted by the electronic revolution and had to close
this year after a 114 year history [2], while the latter is best
illustrated by the fate of Boo.com [3], an Internet cloth-
ing retail company that spent $135 million of its investors
money before having to close down. In this work, we in-
vestigate the size distribution of businesses in a model of
fragmentation and aggregation.

a e-mail: rene.dhulst@brunel.ac.uk

We define a very simple model where customers try to
find a business that fits their expectations as well as pos-
sible, gathering information at random. The businesses
themselves are constrained by the fact that most cus-
tomers are expecting a particular price, and businesses
that do not offer this price are likely to go bankrupt. No
attempt is made to mimic any real situation, we have sim-
plified the model as much as possible in an attempt to
capture the salient features of the process. For instance,
a customer either goes to one business or none, and all
businesses are completely identical, that is, the only dif-
ference between businesses is the price they offer. Both
these assumptions are highly unrealistic and we discuss in
Section 6 to what extent the results of our model compare
with empirical data. The ultimate purpose of our model
is to address the dynamics of the cooperative behaviour
of selling organisations interacting through the customers
that they try to attract. As such, we expect our model to
point towards universal features of organisations that are
competing to attract customers, like shops or companies.
To avoid any confusion, we will stick to the generic terms
business to denote the selling organisation and customer
for a buying agent, postponing our comparison with real
life to Section 6. This will allow us to discuss the assump-
tions of our model in the light of a comparison between
its results and empirical data.

The model is defined in detail in Section 2, previous
models are recalled in Section 3, numerical simulations are
presented in Section 4 and they are analysed in a mean-
field framework in Section 5. Our results are compared
with empirical data in Section 6 and summarised in the
last section.
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2 The model

The model is made up of customers and businesses, where
a business corresponds to a cluster of customers. A cus-
tomer can only go to one business or none. Both customers
and businesses are given prices. The price associated with
a customer is an estimate of the amount of money he can
spend. Initially, these prices are chosen from a probability
distribution D(p). We denote the average price over all
customers by p. The price of a business is the price paid
by all its customers, that is, all customers of a business
are associated to the same price, which is the price of the
business. This price is fixed by the first customer which,
because of this special role, can be seen as the owner of
the business. At the beginning of the simulation, there are
only clusters of one customer. Hereafter, we consider that
the number of customers, N0, is fixed.

At each time step, a customer i is chosen at random.
If i belongs to a business, this business goes bankrupt
with probability αi = |pi − p|, or nothing happens with
probability 1 − αi. Remember that pi is also the price of
the business. This assumes that a business that is badly
adapted to the commonly agreed price cannot survive. The
bankruptcy originates from the desertion of customers
from high prices or from financial slump for too low prices.
In economics, this refers to the theory of perfect competi-
tion, which implies that the market price is equal to the
marginal cost, preventing a firm from just choosing a price.
When a business goes bankrupt, all its customers are given
new expected prices in a range r around their previous
common price p. If the chosen customer i is a cluster of
size one, he is a free customer who wants to make up his
mind upon which business he prefers. Another customer
j is chosen at random and with a probability |pi − pj |,
i decides to go to the same business as j, otherwise, he
remains a free customer. This process suggests that cus-
tomers with similar expectations are more likely to go to
the same business. Then, i is forced to comply with the
price proposed by the business and his expected price is
changed to pj. We have not excluded the possibility that
j could be a cluster of size one. Hence, if i is a cluster of
size one, he is a free customer, while if j is a cluster of
size one, he is the first customer or the owner of a new
business.

In this model, both businesses and customers are con-
strained. Businesses have to comply with the market
agreed price, otherwise they go bankrupt, while customers
can only choose between existing businesses. We would
say that customers are price takers. These two processes
can be compared to a democratic and a dictatorship con-
straints respectively, as defined in previous models of herd-
ing [4]. It was shown in [4] that democratic aggregations
lead to a convergence towards one common value for p,
which will be identified as the market price here. Dicta-
torship aggregations lead to a spontaneous segregation in
the population, but as shown in [5], a mixed version of
both aggregation processes tends to favor the democratic
convergence.

As can be appreciated, the model is very simple and
is based on the assumption that the market is essentially

price driven. We assume that customers are only going
to one particular business, all businesses being identical.
No spatial structure is introduced, customers do not have
any notion of a business being closer than another. Fi-
nally, customers only consider going to another business
if their business is going bankrupt. All these assumptions
are likely to have a different impact on different applica-
tions of our model, and they are best discussed in Sec-
tion 6, where we compare the predictions of our model
to different empirical data. Finally, let us also mention
that we only consider the model in its relation with cus-
tomers considering different prices, but that it could be
reformulated in many different situations. We could speak
of investors instead of customers and consider that the pi’s
are interest rates instead of prices, for instance.

3 Previous models

The size distribution of businesses is not a new field of re-
search and it has already attracted a considerable amount
of work in economics, and more recently in physics. We de-
lay to Section 6 the presentation of some empirical studies,
to be able to compare with results of the model, while we
consider here previous models for the growth of businesses.

Pareto [6], Gibrat [7] and Zipf [8] among others, have
shown that power-laws are found in many different areas
of sciences, such as size distribution of taxonomic gen-
era, word frequency in modern languages or business size
distribution, for examples. As these and many other sub-
jects are only remotely related to each other, it is obvious
that the similarities can only arise from the underlying
dynamics, which should be independent of the details of
the particular system considered. Champernowne was one
of the first to consider a stochastic model for the growth
of businesses [9], and he already noticed that there are so
many factors influencing a business, that any model should
either be unrealistically simplified or hopelessly compli-
cated. He went for the first option and proposed a model
where businesses belong to a given income range, and can
move from one income range to another, the total wealth
being conserved. Simon proposed a similar model, that he
introduced in the context of word frequency [10], and ex-
tended to reproduce income distributions. Later, Simon
and Bonini made a review of the subject, emphasizing the
need for further research into the processes that generate
such distributions [11].

A major breakthrough in this direction was then made
by Mandelbrot [12], with his seminal works on Lévy distri-
butions. His original work was concerned with price vari-
ations, but it has been extended since then. The main re-
sult is that the distribution of a sum of random variables
does not necessarily converge towards a Gaussian distribu-
tion, but it can also converge towards a Lévy distribution.
These distributions are particularly suitable to describe
large deviations, having power-law tails, with an expo-
nent that varies between 1 and 3. It is interesting to note
that in a very complete review of the growth of firms [13],
Steindl suggested that the failure to converge towards
a Gaussian distribution can be attributed to boundary
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Fig. 1. Price pi of a business as a function of its number of
customers, for N0 = 104 customers and a range r = 0.1. The
result is taken at the end of a simulation of 106 time steps.

or other considerations, while the author was not con-
vinced that the alternative explanation put forward by
Mandelbrot would be helpful in economics. This illustrates
the complete change of perception that we have at the
present time.

More recently, physicists have been considering mod-
els of company size distributions, based on the internal
structure of a company [14], or on the exchange of cap-
ital between competing firms [15,16]. One of the foci of
these models has been the results for firm growth from
reference [17].

The model proposed here is very similar to the models
of Champernowne [9] or Simon [10]. To solve it, a mean-
field model is introduced, replacing the microscopic price
dynamics by two macroscopic parameters of aggregation
and fragmentation. Allowing one of these parameters to
depend on a business size, we are able to determine the size
distribution of the clusters of customers. The particular
case of business distributions is interesting as it requires
a particular tuning to obtain the required power-law dis-
tribution. The introduction of the macroscopic model also
opens the way for further research into different size dis-
tributions and, as is shown in reference [18], more general
distributions can be generated. This work illustrates the
interaction between microscopic and macroscopic models.
The microscopic price dynamics is first introduced, moti-
vating the macroscopic model, which can be made more
general and motivates further research for the correspond-
ing microscopic models.

4 Numerical results

We have performed numerical simulations of the model
for a population of 104 customers and an initially uniform
distribution D(p). In Figure 1, we report the prices pi of
the businesses as a function of their number of customers
for one simulation of 106 time steps with a range r equal to
0.1. The very large maximum around p ≈ 0.5 shows that
only businesses that are offering a price close to the aver-
age price over all customers can grow. We call the average

price p the market price. Going away from this maximum,
businesses with an exponentially decreasing size can form,
with a steeper decrease as r gets smaller. Figure 1 is not
difficult to understand if we consider the following equa-
tion for the size s of a business proposing a price p at
time t,

Et(s(p, t+ 1)− s(p, t)) =
sn1(1− 〈|p− pj(1)|〉1)

N0

− s(s− 1)
N0

|p− p|, (1)

using Et(x) for the expectation of x at time t. pj(s) is
defined as the price proposed by the jth business of size
s and n1 is the number of clusters of size 1 per customer.
〈|p − pj(1)|〉1 is the average value of |p − pj(1)| over all
clusters of size 1. The first term on the right hand side
of equation (1) describes the growth of a business of size
s proposing a price p, while the second term takes into
account the probability of bankruptcy of this business. If
we assume that the system is infinite and in its stationary
state, n1, p and 〈|p − pj(1)|〉1 are all time independent,
and we can solve for s(p, t) in the limit t→∞ to obtain

s(p) = 1 + n1
1− 〈|p− pj(1)|〉1

|p− p| · (2)

s(p) corresponds to the average size that a business
proposing a price p reaches. Of course, s(p) ≥ 1 and di-
verges for p = p, as can be seen in Figure 1, where most
businesses are proposing a price close to p.

The value of the market price p is approximately equal
to the first moment of the initial distribution D(p). Super-
imposing the results of Figure 1 for several simulations
gives a distribution with a broad maximum extending
from 0.5 − r/2 to 0.5 + r/2, for an initially uniform dis-
tribution, with exponentially decreasing tails out of this
range. The existence of a commonly agreed market price
is the relevant result, while the exact value of this price
is meaningless. Variants of the model can be devised to
make the market price converge towards different values
by changing the way a customer picks his business. For
instance, pi could be considered as the maximum amount
of money available to customer i. For this variant and oth-
ers, the same analysis can be carried out by changing the
expression 1−〈|p−pj(1)|〉1 according to the details of the
variant. The main conclusion remains unchanged, namely
that s(p) diverges at p, so that most businesses are offering
the same price. Also, one could choose to fix a parameter
instead of taking p as reference value, without changing
the results. This, however, would be much more artificial.

In Figure 2, we present the size distribution n(s) of
businesses of size s for the same values of the parameters.
A power-law n(s) ∼ s−τ with an exponent τ = 2.20±0.05
can be seen for large s. This compares with the empiri-
cal findings of Nagel et al. [19] for the US establishment
and firm sizes, as estimated from annual sales in the retail
sector. In this study, the authors found that the size distri-
butions are power-laws of exponent τ = 2. But as already
explained, we postpone to Section 6 a detailed comparison
of the model with empirical data.
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Fig. 2. Cluster size distribution for the businesses (•). The
continuous line is the size distribution given by equation (9)
for α = 1.20. The dashed line is a guide to the eye for a power-
law of exponent τ = 2.20, the expected asymptotic behaviour.

5 Analytical results

To investigate this model analytically, it is convenient to
consider a mean-field version. At each time step, a cus-
tomer i is chosen at random. If he belongs to a cluster
of size s > 1, the business he is going to goes bankrupt
with a probability a. That is, his cluster of s customers is
transformed into s independent clusters of one customer
with a probability a. If i is a cluster of size one, another
customer j is chosen at random and i becomes a customer
of the same business as j with a probability b. The mi-
croscopic dynamics generated by the prices is replaced by
two macroscopic parameters a and b. As in the present
model all businesses are alike apart from their number of
customers, we assume that these parameters a and b can
be functions of the size of a business only. Moreover, the
parameter b expresses the time scale for the information
transmission between different customers. For simplicity,
we assume that customers are gathering information at
random, which means that they are more likely to gather
information about businesses with a large number of cus-
tomers than small businesses. Hence, we assume that b
is a constant and fix its value to 1. The validity of this
assumption is discussed somewhere else [18]. It implies
that the difference in time scales between bankruptcies
and customer choices is controlled by a(s). The relation
between the microscopic prices and the macroscopic func-
tion a(s) is

a(s) =
1
ns

ns∑
j=1

|pj(s)− p| (3)

where the summation is running over all clusters of size s,
and pj(s) is the price proposed by the jth business of size
s, as previously defined.

The master equations for the evolution of the number
ns of businesses of size s per customer at time t for s > 1
can be written as

∂ns
∂t

Ê = −a(s)sns

(
1 +

n1

a(s)

)
+ n1(s− 1)ns−1. (4)

Note that one time step in this continuous description is
chosen to correspond to one attempted update per agent
in the numerical simulation. The first term on the right
hand side represents the disappearance of businesses of
size s, either because they go bankrupt, or because they
increase their size to s+ 1. The second term describes the
appearance of new businesses of size s due to businesses
of size s − 1 attracting a new customer. For s = 1, the
relation is

∂n1

∂t
=
∞∑
s=2

a(s)s2ns − n1

( ∞∑
s=1

sns + n1

)
. (5)

The first term on the right hand side corresponds to the
appearance of s new independent customers because of the
bankruptcy of a business of size s, which happens with a
probability a(s). The second term describes the disappear-
ance of independent customers because they choose to go
to a particular business. Note that n1 appears twice in
this second term because of the two possible natures of
clusters of size one.

As customers are chosen at random, larger businesses
are more often selected than smaller ones. Hence, if the
bankruptcy probability of a selected business is equal to
a(s), its effective probability of going bankrupt is equal
to aeff = sa(s). In the following, we consider that a(s) =
αn1s

−β , where α and β are free parameters. The multi-
plicative factor n1 is introduced for convenience. The value
of β determines whether bankruptcies are more likely to
affect the small or large businesses. For β < 1, the big-
ger the business, the larger the effective probability of go-
ing bankrupt, and conversely for β > 1. β = 1 gives an
effective bankruptcy probability aeff independent of the
businesses size. For actual situations, we expect β to be
greater than or equal to one, as bigger businesses are usu-
ally firmly established. We call the parameter α the rate
of bankruptcy because it is a measure of the difference in
time scales between bankruptcies and customers’ choices.
Note that as α is multiplied by s−β, it does not necessar-
ily have to be small to have a small probability of going
bankrupt.

Even if it seems rather arbitrary to take a(s) as a
power-law, this choice is, at least, not unreasonable. First,
it has a(s) independent of s as special case, which is partic-
ularly suitable as empirical data on company bankruptcy
show little dependence on size [17]. Second, as will be
shown, it can reproduce the results of the proposed micro-
scopic model. Third, as noted in early work by Pareto [6],
Gibrat [7] and Zipf [8] amongst many others, power-laws
are ubiquitous in nature, which means that taking a(s) as
a power-law is a reasonable starting point. However, one
should notice that this is not the only possibility and that
other possibilities are investigated elsewhere [18].

The stationary solution of equation (4) is given by

(αs−β + 1)sns = (s− 1)ns−1 (6)

which has the formal solution

ns =
n1

s

s∏
r=2

1
1 + αr−β

· (7)
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A similar expression was found for the average number of
sites with a given number of links in growing random net-
works [20]. For large s, this expression has the asymptotic
behaviour

ns ∼



s−1−α β = 1,

s−1 exp
[
−α
(
s1−β−21−β

1−β

)]
1
2 < β < 1,

s
α2
2 −1 exp [−2α

√
s] β = 1

2 ,

s−1 exp
[
−α s1−β1−β + α2

2
s1−2β

1−2β

]
1
3 < β < 1

2 ,

(8)

and so on. As in [20], whenever β decreases below 1/m,
with m a positive integer, an additional term in the ex-
ponential becomes relevant. For values of β greater than
1, the model does not have any stationary state because
the fragmentation rate cannot compensate the aggrega-
tion process. This corresponds in any finite system to a
monopolistic market, where one business attracts all cus-
tomers.

The numerical results of the microscopic model suggest
that β = 1 and that α is close to but bigger than 1. This
can be justified by combining equations (2), which implies
that s ∼ |p − p|−1, and (3) with a(s) = αn1s

−β . This
gives αs−β ∼ s−1, or β = 1, a result that we verified
numerically. For β = 1, the size distribution is equal to

ns =
(s− 1)!(α+ 1)!

(α+ s)!
n1. (9)

The continuous line presented in Figure 2 corresponds to
this equation for α = 1.20. This value of α has been de-
termined numerically using a power-law fit for large s,
the value of n1 and the value of the number of busi-
nesses. From these three different measurements, we ob-
tained that α = 1.20± 0.05. The relation between n1, the
number of businesses and α is given below.

To determine the value of α in the microscopic model,
we first calculate n1 from the stationary solution of equa-
tion (5), which gives

n1 =
α− 1
α+ 1

(10)

for β = 1. This implies that α should be greater than or
equal to one to have a sensible solution. In effect, in any
real situation, we expect aeff = sa(s) to be small because
the process of choosing a business is much faster than
the bankruptcy rate. Setting aeff = ε, where ε is a small
parameter, and expanding to the first order in ε, it is easy
to show that α = 1 + 2ε and that ε ∼ 1/N0. Otherwise
stated, α is greater than but close to 1, converging to 1 as
the size of the system diverges.

In both models, for a customer to decide to join a
business, another customer of this business has first to be
selected. If we consider that a link is created between these
two customers, the connectivity c of this network, defined
as the average number of links per customer, is related to
the number M0 of businesses per customer according to

c = 2
(

1− M0

M1

)
(11)

because a business of size s has s − 1 links, or 2(s − 1)
links for s customers. In equation (11), Mk denotes the
moment of order k of the distribution ns. Of course, M0

is the number of businesses per customer and M1 = 1,
for normalization. The detailed structure of the network
is very simple, as businesses are not connected with each
other, and the 2(s− 1) links per s customers of a business
of size s are connected at random, with at least one link
starting from each customer. Using equation (6) for β = 1,
the number of businesses per customer can be calculated
and we find M0 = (α−1)/α. As ns ∼ s−1−α, all moments
of order k ≥ 1 + α are diverging and because α is close to
one for the microscopic model, only M0 stays finite.

Finally, the variations of the market price generated
by the microscopic model can be investigated using our
results for the size distribution. The large changes in the
market price originate from bankruptcies, when a conse-
quent number of customers are given new expected prices
in a given range r around their old price. When a business
of size s goes bankrupt, which happens with a probability
sa(s)ns, the average change in the market price is of the
order of r

√
s/4. So, if a returnR is defined to be the change

in the market price in one time step, the probability P (R)
of having a return of size R scales like P (R) ∼ 1/R for
large R. We checked that this result agrees with our nu-
merical simulations.

6 Comparison with empirical data

Throughout this work, we have been using the term
business to refer to an organisation that sells a product
or a commodity. After having analysed the models, we
can now consider their range of applicability. There has
been a lot of work investigating empirically the size
distribution of different selling organisations. One of
the first problems was to choose a relevant quantity
to describe the size of a selling organisation, but as is
explained in [17] for instance, using sales, number of
employees or market capitalisation gives essentially the
same result. This allows us to discuss results borrowed
from different sources of empirical data. In 1897, Pareto
[6] proposed a power-law distribution for the wealth of
individuals. More than 100 years later, this result is still
a topical question, and we will concentrate on recent
empirical data. Nagel et al. [19] reported results for US
establishment size and firm size in the retail sector, using
annual sales as a proxy for the size. They reported that
both size distributions display a maximum for a typical
annual size of approximately $400, 000. Around this
typical size, both distributions are lognormal. However,
for larger annual sales, a power-law like

n(s) ∼ s−2 (12)

was proposed, where n(s) refers to the number of sales
of size s. This power-law is in agreement with our micro-
scopic model, and our macroscopic model for α = 1 and
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β = 1. As mentioned in the work of Nagel et al. [19],
an establishment is a single physical location at which
business is conducted. A firm or company may consist of
one establishment or more. Hence, our models should be
in better agreement with firm distribution than establish-
ment distribution because we do not introduce a spatial
structure. However, there is no empirical evidence of any
difference between both distributions, suggesting that the
size distribution can only be weakly dependent on space.
The models of reference [19] are richer and more ambitious
than ours, because they eventually would like to construct
a model where the acceptance of money, the emergence of
competitive price and the emergence of market structure
all arise from the system dynamics [19]. Having taken a
simpler approach, we are able to find analytical solutions
to our models. Another interesting feature of our micro-
scopic model is that it generates a time scale separation
between bankruptcy and customer choice, a property that
was introduced by hand in [19].

As in our models most businesses are proposing a sim-
ilar price, the number of customers in one business is
also a measure of the income of that business. As such,
we can consider the company income distributions to see
if our models do agree with the dynamics of companies.
Okuyama et al. [21] considered the income distribution of
companies in Japan. They proposed a Zipf plot of the in-
comes, ranking companies according to their income, and
obtained a power-law of exponent of −1 for the income
ranking plot, which is equivalent to a power-law of expo-
nent −2 for the income distribution. This result for the
aggregate data of different sectors companies is also ob-
tained for most sectors taken separately.

Aoyama et al. [22] investigated the debt of bankrupt
companies in Japan, from 1997 to the end of March 2000.
Their data are not conclusive but they suggest that a
power-law of exponent−2 for the size distribution of debts
is reasonable.

The results of references [19,21,22] suggest there is a
universality in the size distribution of selling entities, with
a power-law distribution of exponent close to −2 in the
limit of large entities. This is in agreement with our mod-
els where such a power-law is found when companies are
competing in a price driven market. However, there has
been work on the size distribution of companies in different
countries [16,23], that concluded that these distributions
are not universal. Most of these distributions can be well
approximated by a power-law of exponent close to −2, in
Spain, Norway or Germany for instance. However, careful
analysis suggests clear differences from one country to the
other. Some countries do display a particularly different
distribution, such as South Africa. It is difficult to clearly
identify the origin of these distinctive features, but they
suggest that our microscopic model is only able to gener-
ate the universal feature of the problem, which is exactly
what we were aiming for. If one wants to generate a whole
set of different distributions, it seems almost certain that
a richer model is needed. We address this problem in a
later work [18].

A particular point of interest of our models is that
they isolate β = 1 as a special value. As we mentioned
earlier, the effective bankruptcy rate aeff scales like aeff ∼
s1−β. So, our models predict that the bankruptcy rate is
independent on the business or company size. This has
indeed been observed in [17].

We should mention that in this study, we have primar-
ily investigated the mean-field model with respect to its
relation to the microscopic model. This particular choice
leads us to assume that a(s) is a power-law. However, tak-
ing a(s) = (ln s)β/s, we obtain that ns is a lognormal dis-
tribution for β = 1 [18]. This result is encouraging as most
studies conclude that the size distribution of companies is
a lognormal distribution for typical company sizes [17],
and a power-law for larger sizes [19,22]. Hence, the micro-
scopic model we introduce offers a potential mechanism to
generate a size distribution with a power-law in agreement
with the results of reference [19], but the mean-field model
has a wider range of validity, depending on the particular
functional form of a(s). This functional form could even
be country dependent, as variations from one country to
the other have been empirically identified [16,23].

7 Conclusions

To summarise, we have presented a microscopic model and
an associated mean-field model to investigate the size dis-
tribution of selling organisations, that we choose to call
businesses for simplicity. The microscopic model is based
on customers trying to find the business that best matches
their price expectation, while businesses have to comply
with the market price to avoid bankruptcy. We showed nu-
merically and analytically that such a dynamic allows only
businesses selling at the market price to grow, cheaper
businesses suffering financial slump while more expensive
businesses cannot attract customers. The size distribution
ns of the businesses, the size of a business being defined
to be its number s of customers, is a power-law ns ∼ s−τ
with an exponent τ close to 2. In the mean-field version
of our model, the need to comply with the market price
is replaced by a probability a(s) that a business of size
s goes bankrupt. Taking a(s) = αs−βn1, the asymptotic
behaviour of ns is determined for every values of β. We
showed that the microscopic model corresponds to β equal
to 1 and α close to but bigger than 1, going towards 1 as
the number of customers goes to infinity. For β = 1, the
exponent of the size distribution is equal to τ = 1+α. The
moments of the size distribution are determined, as well
as the connectivity of the network of customers and the
market price variations. The results for the microscopic
model are in agreement with numerous empirical data,
and we cited recent results about the size of companies
annual sales in the US [19] and about the size of debts of
bankrupt companies in Japan [22]. We also stressed that
we have focussed our attention on an analytical form for
a(s) inspired by the microscopic model, while other forms
for a(s) can lead to a lognormal distribution for the size of
the companies, an empirical result put forward by several
authors [17].
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